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Body Weight Analysis from Human Body Images

Min Jiang, Guodong Guo*, Senior Member, IEEE,

Human body images encode plenty of useful biometric in-
formation, such as pupil color, gender, weight, etc. Among
this information, body weight is a good indicator of health
conditions. Motivated by the recent health science studies, this
work investigates the feasibility of analyzing body weight from
2-dimensional (2D) frontal view human body images. The widely
used body mass index (BMI) is employed as a measure of
body weight. To investigate the problems at different levels
of difficulties, three feasibility problems, from easy to hard,
are studied. More specifically, a framework is developed for
analyzing body weight from human body images. Computation
of five anthropometric features is proposed for body weight
characterization. Correlation is analyzed between the extracted
anthropometric features and the BMI values, which validates the
usability of the selected features. A visual-body-to-BMI dataset
is collected and cleaned to facilitate the study, which contains
5900 images of 2950 subjects along with the labels corresponding
gender, height, and weight. Some interesting results are obtained,
demonstrating the feasibility of analyzing body weight from 2D
body images. In addition, the proposed method outperforms two
state-of-art facial images based weight analysis approaches in
most cases.

Index Terms—Body weight analysis, visual analysis of Body
mass index (BMI), anthropometric features, visual-body-to-BMI
dataset

I. INTRODUCTION

In modern lives, there are various social networks with
different functions, such as image sharing, dating, job hunting,
and blogging. With the popularity of digital camera, more and
more people record their lives via photos or videos and post the
records to social media. Photos from social networks contain
lots of hard biometric and soft biometric information, such as
pupil color, gender, height, weight, age, etc. Such biometric
information can be utilized for individual identification [1]–[6].
Among the soft biometric measures, body weight and fat are
good indicators of health conditions.

The purpose of this work is to explore the feasibility of body
weight analysis from the visual appearance of human body
images. We develop some useful cues to characterize body
weight/fat from human body images. The widely used body fat
indicator−body mass index (BMI= weight(lb)

height(in)2 × 703) is used
as a measure for body weight. The BMI has been employed as
a measure in many previous studies [7], [8], which is also a risk
factor for many diseases. For example, [9], [10] demonstrated
that increased BMI is associated with some cancers (such
as breast cancer, colon cancer, thyroid cancer, etc.) for both
males and females. Wolk et al. [11] presented that BMI is a
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Fig. 1. Some frontal body images with BMI values and corresponding
categories. The increase in body adiposity is observed as the BMI value
increases.

risk factor for unstable angina and myocardial infarction in
patients. Meigs et al. [12] studied the risk of type 2 diabetes and
cardiovascular disease (CVD) stratified by BMI. Considering
the close connection between BMI and some diseases, BMI is
important for personal health monitoring and medical research.

Generally, BMI is measured in person with special devices.
For convenient monitoring, this work explores an automatic
BMI prediction approach from people’s daily life photos. Our
work can be of great benefit to medical researchers to access
BMI data from social networks, which may provide lots of
sources for health monitoring in large populations.

A. Motivation

The motivation of this study comes from several aspects.
First, from human vision, the body weight/fat can be intuitively
observed by humans from 2D images. Some examples of body
images with corresponding BMI values are shown in Fig. 1. The
increase in body adiposity can be observed by human vision
without difficulty. Second, many studies in health science [13]–
[16] had shown that some anthropometric measures, such as
waist-thigh ratio, waist-hip ratio, waist circumference, etc., are
indicators for obesity and are correlated to BMIs. Based on
the above intuitive observation (as shown in Fig. 1) and health
science studies, we believe that it is worth investigating a
computational approach to analyze body weight from human
body images.

B. Related work

There are a few studies working on estimating human
body weight or BMI from body related data, such as body
measurements, 3-dimensional (3D) body data and RGB-D body
images. Velardo et al. [17] studied the body weight directly
from anthropometric data (body measurements) collected by
NHANES [18]. A polynomial regression model was employed
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to analyze the anthropometric data. Cao et al. [19] investigated
the use of true measurements of the body (provided by
CAESAR 1D database) for the prediction of certain soft
biometrics, such as gender and weight. Detailed definitions
about many different measurements of the anthropometric
feature were included in their work. Velardo et al. [20] studied
the weight estimation from 3D human body data by the same
anthropometric features as in their previous work [17]. Velardo
et al. [21] estimated the weight of a person within 4% error
using 2D and 3D data extracted from a low-cost Kinect RGB-D
camera output. Nguyen et al. [22] proposed a weight estimator
based on single RGB-D images, which utilized the visual
color cues, depth, and gender information. Nahavandi et al.
[23] presented a skeleton-free Kinect system to estimate BMI
of human bodies. Recently, Pfitzner et al. [24] described the
estimation of the body weight of a person who is in front of
an RGB-D camera with three different poses: lying, standing
and walking.

Instead of estimating body weight or BMI from body images,
some work analyzed body weight or BMI from face images.
Wen and Guo [25] first proposed a computational method for
BMI prediction from face images. They also analyzed the
correlations between facial features and BMI values. Lee et
al. [26] examined 15 2D facial characteristics to identify the
strongest predictor of normal and viscerally obese subjects.
Later on, Pascali et al. [27] proposed a method for automatic
extraction of geometric features, related to weight parameters,
from 3D facial data. Kocabey et al. [28] estimated BMIs
from face images collected from a social media website. They
employed the pre-trained VGG-Net and VGG-Face models to
extract features and then utilized a support vector regression
model to predict BMI. Recently, Dantcheva et al. [29] explored
the possibility of estimating height, weight, and BMI from
single-shot facial images by proposing a regression method
based on the 50-layer ResNet architecture. All the above
approaches require clear frontal view face images as the input.

Some works studied gender or body shape from body images
or 3D scanners. Wu et al. [30] explored gender classification
from unconstrained and articulated human body images. Cao
et al. [31] developed a method based solely on metrological
information from facial landmarks of 2D face images for
gender prediction and demonstrated that the geometric features
achieve comparable performance as appearance features in
gender prediction. Gonzalez-Sosa et al. [32] studied gender
estimation based on information deduced jointly from face
and body and presented two score-level-fusion schemes of
the face and body-based features which outperformed the two
individual modalities in most cases. Balan et al. [33] studied the
markerless human shape and pose capture from multi-camera
video sequences using a richly detailed graphics model of 3D
human shape. Their approaches required multi-camera video
sequences for 3D model reconstruction. Lu et. al [34] collected
anthropometric data by 3D whole body scanners, which consist
of four sets of laser beams and CCD cameras. [33] and [34]
share the limitation of relying on complex 3D data collection
devices to generate precise body data.

In contrast to the above works, we propose an approach to
analyze body weight just from 2D body images. Neither depth

images nor clear face images are required for this approach.
One advantage is that the approach is non-invasive. Moreover,
it can work on images with incomplete body parts, even the
back view of the body and low-quality images. To the best of
our knowledge, this is the first work to explore weight/BMI
related information from 2D body images only.

C. Our contribution

It can be challenging to directly estimate BMI values from
2D human body images. We consider three problems, from
easy to hard. By investigating these problems at different levels,
one can understand how well the algorithms can address the
related problems in real applications. The main contributions
of this work are as follows:
• A new visual-body-to-BMI dataset is collected and

cleaned, containing 5900 images of 2950 subjects (each
contains a pair of images), which is the first dataset of
its kind.

• A computational framework is developed for body weight
and BMI analysis from 2D human body images, which
can process either a single image or a pair of images.

• Five anthropometric features are proposed for body weight
analysis from 2D body images. Computational methods
are developed to extract these features and map them into
weight/BMI values.

The remainder of the paper begins with describing the newly
collected and cleaned visual-body-to-BMI dataset in Section
II. Section III introduces the three problems we study and
presents the framework for body weight analysis. Details about
the feature detection and computational method are given in
Section IV. Section V describes the employed machine learning
models. The calculation of Pearson’s correlation coefficient
and the metrics used to evaluate the performance are presented
in Section VI. In Section VII, we first calculate the correlation
between the extracted features and the BMI values; and then
provide the detailed experimental results and discussion. Finally,
conclusions and future work are given in Section VIII.

II. DATASET WITH CLEANING

The human body images are downloaded from the website
Reddit posts 1. In total there are 47, 574 images of 16, 483
individuals. Each individual has at least one “previous” and
one “current” images (or a collage which was made by
sticking several images). As shown in Fig. 2, all the images
under the same individual folder have the same annotations
(except the image number). The format of the original
annotation is “ID image number previous weight current
weight height gender”. Thereby, all the images under the same
individual folder share the same information about weights
(“previous” and “current”) and height, the weight for each
image cannot be automatically distinguished by algorithms. It
needs manual processing (visually check) to correct the weight
for the individuals.

We processed and cleaned the dataset with automatic and
manual steps which are described below. First, we went

1Website: http://www.reddit.com/r/progresspics
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Original annotation:
3i8pst_HZST6QP_205

_130_65_true

Weight: 205 lb, 
height: 65 in, female

Weight: 130 lb, 
height: 65 in, female

(a) (b)

Original annotation: 
4fwxey_F0H3Hy7_220

_155_67_true

Original annotation: 
4fwxey_LjO3ujg_220

_155_67_true

Original annotation: 
4fwxey_LjO3ujg_220

_155_67_true

Weight: 155 lb, 
height: 67 in, female

Weight: 220 lb, 
height: 67 in, female

Fig. 2. The illustration of cleaning images with automatic and manual steps. Two cases are given. The first case (left panel) shows the individual just contains
one collage (an image made by sticking several images). The second case (right panel) shows the individual contains 3 images, among them there are 2 group
photos (more than one person shown on the image). The blue arrow represents the process of cropping every single body from a composite image based on
automated body detection. The orange arrow represents the manual process of correcting annotations. The annotations for the “previous” and “current” images
are visually distinguished by body size and shape.
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Fig. 3. The distribution of BMI values in the body-to-BMI dataset. The BMI
distribution is in a wide range from 15 to 75.

through the original images by a body detector, using a method
similar to [35]. Then, given the detected bodies, each single
body image was cropped from the original images. During
the process, we kept the cropped body images containing
both head and frontal body (with required joints detected).
If there are greater than or equal to 2 cropped images kept
for an individual, the algorithm keeps the individual folder.
Now the left (cropped) images under the same individual
folder still share the same annotation (“ID image number crop
number previous weight current weight height gender”). The
next step was to visually distinguish which image has the
“previous” weight and which has the “current” weight. Since
the annotations only have the “previous” and “current” body
weights for each individual, just one “previous” image and
one “current” image were kept for each individual. Finally, we
manually corrected the annotations for these images.

Fig. 2 shows the procedure of processing the images with
automatic and manual steps. Two cases are introduced: the first
case shows the individual just contains one collage (an image
made by sticking several images); the second case shows the
individual contains 3 images, among them there are 2 group

photos (more than one person shown in the image). The blue
arrow represents the automatic process of cropping every single
body from the images. Each cropped body in the image is
labeled by a red boundary box. The orange arrow represents the
manual process of distinguishing and correcting annotations.
The annotations for the “previous” and “current” body images
are visually distinguished by body size and shape. A pair of
images mentioned throughout this work is one “previous” and
one “current” body images from the same individual.

After these procedures, there are 2950 subjects (individuals)
left, each contains two images: one “previous” and one “cur-
rent”. This leads to a total of 5900 images with corresponding
labels of gender, height, and weight. The set of images is
noted as visual-body-to-BMI dataset2 containing 966 females
and 1984 males. The ground truth of BMI can be calculated.
The BMIs distribution of the body-to-BMI dataset is shown in
Fig. 3. The BMIs distribution is in a wide range from 15 to
75. Specifically, 46 body images are in the underweight range
(BMI ≤ 18.5), 1416 are normal (18.5 < BMI ≤ 25), 1863
are overweight (25 < BMI ≤ 30) and 2575 are obese (BMI
> 30). By comparing the weight of the “previous” and “current”
images, we conclude that 1246 subjects show an increase in
weight, 1233 subjects show a decrease in weight, and the rest
481 subjects have the same weight in both images. The height
of each subject remains the same in a pair of images. The
subjects are natural with various clothing styles.

III. PROBLEMS TO STUDY

The studies in health science [13]–[15] show evidence on the
relation between some anthropometric measures and obesity.
Considering that BMI is a widely used body weight/fat indica-
tor, we employ this index as the measure for the body weight.
This work explores the relationship between the BMI values
and visual appearances of the human body. The correlation

2Please contact the authors for the dataset.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. , NO. , 2019 4

Predicted BMI 
difference : 5.7

How different?
(from left to right)

Weight Increased,
Decreased or 

keep the same?
(from left to right)

BMI value?
(single image)

Fig. 4. Three kinds of problems explored for body weight analysis. For the
pairwise images, the change is from the left one to right one.

between BMI values and the computed anthropometric features
is studied first. Given the correlation, we analyze the body
weight issue from 2D human body images at different levels
of difficulties (from easy to hard, based on human perception).

Fig. 4 shows the three problems studied for body weight
analysis. First, we recognize the weight difference from a pair
of frontal view body images. This is defined as a three-class
classification problem. The output is a triple classification result
which decides whether the weight of the subject is increased,
decreased or keeping the same. In our dataset, the height of
each subject remains the same height in the corresponding
pairwise images, thereby the weight difference is equivalent to
BMI difference. Then, we go further and estimate how big the
weight or BMI difference between the pairwise images is. The
above two problems are studied based on the pairwise images
from the same individual. The key of these two problems is
to measure whether the change between the two images can
be computed or not. A more challenging task is to directly
estimate the BMI value from a single body image.

Fig. 5 depicts the framework of the body weight analysis
approach, which consists of three steps:

1) Body contour and skeleton joints detection.
2) Anthropometric feature computation from the body

images.
3) Apply statistical models to map the features to the weight

differences or the BMI values.
As shown in Fig. 5, the approach can classify the weight
difference from the pairwise images. The classification is an
output of three different results {0,1,-1}: 0 indicates no weight
change, 1 indicates weight increased, and -1 indicates weight
decreased. The order of the images in the pair does matter,
and the change is from “previous” (left) to “current” (right),
as indicated in Fig. 4. Note that the prediction of the BMI
differences and the BMI values are solved by two different
regression models. The details about feature extraction and
mapping will be given in Sections IV and V, respectively.

IV. FEATURE EXTRACTION

In this section, we present the details about feature extraction
for the proposed approach. Body contour and skeleton joints

(CSJ) detection is the first step for feature extraction. The output
of the detection is used for anthropometric feature computation.

A. Contour and skeleton joints detection

Body contour and skeleton joints (CSJ) detection are based
on deep networks for contour and skeleton joints detection.
Fig. 6 shows the body contour and skeleton joints detected by
the CSJ detector. The brick red area represents the detected
body part. The asterisks represent the detected skeleton joints.

In order to detect the body contour from an image, pixel-level
image segmentation is applied to it. We use the conditional
random fields as recurrent neural networks (CRF-RNN) method
[36] for body detection. The mean-field CRF inference is
reformulated as an RNN, then the CRF-RNN layer (iterative
mean-field layer) is plugged into a fully convolutional neural
network (FCN). By applying the CRF-RNN method to the
image, the body regions are labeled out, while all other regions
in the image are labeled as the background. This leads to
a set B contains all pixels which are labeled as the human
body, and a set G contains all pixels which are labeled as the
background. lx,y represents the label assigned to the pixel
locates at (x, y), where (x, y) denotes the horizontal and
vertical coordinates on the image. lx,y is from a pre-defined set
of labels L = {b, g}. Here b is the label for the human body
and g is for the background. Then B = {(x, y) : lx,y = b} and
G = {(x, y) : lx,y = g}. We will use this in Section IV-B for
computing anthropometric features.

With the locations of skeleton joints in an image, the
key parts (waist, hip, etc.) are located for extracting the
anthropometric features. In this work, the convolutional pose
machine (CPM) [37] is employed to detect the skeleton joints
from body images. CPM consists of a series of convolutional
neural networks (CNN) that repeatedly produce 2D belief maps
for the location of each body part. The belief maps produced
by the previous CNN are used as the input of the next CNN.
By using the CPM, a list of coordinates of the key skeleton
joints can be obtained, such as left hip, right hip, left shoulder,
and right shoulder, etc. The coordinates of skeleton joints will
be used for computing anthropometric features.

B. Anthropometric feature computation

Several anthropometric indicators suggested in health science
[13]–[16] are used as measures for the obesity. Some listed
indicators include waist-thigh ratio, waist-hip ratio, abdominal
sagittal diameter, waist circumference, and hip circumference.
Taking into account these indicators, we have five anthropomet-
ric features automatically detected and computed from body
images, including waist width to thigh width ratio (WTR), waist
width to hip width ratio (WHpR), waist width to head width
ratio (WHdR), hip width to head width ratio (HpHdR), and body
area between waist and hip (Area). Among these features, Area
is inspired by our human perception.

The measurement of the waist circumference and the hip
circumference cannot be directly obtained from 2D images. We
consider the particular body part as a cylinder. Then we use
the width of the body part (on a 2D image) to approximately
represent the circumference of a particular body part. Similar
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Pair-wise images

Feature Extraction

Classification
(Multi-SVMs)

Regression
(SVR/GPR)
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Weight change
[0,1,-1]

BMI value

Anthropometric 
feature
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HpHdR
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and skeleton 

joints
DetectionA single image

Difference value

Fig. 5. The framework of our proposed weight analysis approach. The approach can take either pairwise body images or a single image as input. It classifies
and predicts the BMI difference from pairwise images, or estimate the exact BMI value from a single image.

Fig. 6. The body contour and skeleton joints detected by the CSJ detector.
The brick red area represent the detected body part. The asterisks represents
the skeleton joints.

TABLE I
ABBREVIATIONS OF BODY PARTS FOR FEATURE COMPUTATION.

Body part Abbrev. Body part Abbrev.
Nose n Hip h
Left ear le Left hip lh
Right ear re Right hip rh
Center shoulder cs Left hip boundary lhb
Waist w Right hip boundary rhb
Left waist lw Thigh t
Right waist rw Left thigh boundary ltb
Left waist boundary lwb Right thigh boundary rtb
Right waist boundary rwb Knee k
Left knee lk Right knee rk

approximation has been utilized and verified in [17]. They
used the width of the upper arm, leg, waist, and calf to test a
polynomial regression model, which was trained by the real
circumferences of the body parts. Since the absolute measures
of the waist width and hip width cannot be obtained from 2D
images without metric/scale information, thereby we compute
the ratio to characterize the relative measures.

Fig. 7 illustrates the anthropometric features visually. There
are 18 detected skeleton joints shown in the figure labeled with
asterisks. In the following, we use the coordinates of 8 detected
skeleton joints for computing anthropometric features. These 8
skeleton joints are the nose, left ear, right ear, center shoulder,

( lwb, lwb) ( rwb, rwb)

( lhb, lhb)

( ltb, ltb)

( rhb, rhb)

( rtb, rtb)

Fig. 7. The anthropometric features computed for body weight analysis. The
18 skeleton joints (labeled by asterisks) are nose, left eye, right eye, left ear,
right ear, center shoulder, left shoulder, right shoulder, left elbow, left hand,
right elbow, right hand, left hip, right hip, left knee, right knee, left ankle and
right ankle. The area filled with green dash dots denotes the feature Area.

left hip, right hip, left knee and right knee. The abbreviations of
skeleton joints or boundaries involved for feature computation
are given in Table I. The abbreviation of a body part is used as
an index which denotes the location of the pixel. For example,
the pixel of left hip is denoted as plh, and its coordinate is
denoted as (xlh, ylh). The size of the input image is M ×N .
The methods for computing the five anthropometric features
are described below:

1) WTR: the ratio of waist width to thigh width. A general
knowledge about human body proportions [38] is used to
initially estimate the location of waist and thigh based on the
detected locations of hip and head. As shown in Fig. 7, the
vertical location of the waist is computed by: yw = 2

3yh +
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1
6 (yn + ycs), where yh = 1

2 (ylh + yrh). Similarly, the vertical
location of the thigh yt = 1

2 (yk + yh), where yk = 1
2 (ylk + yrk).

With the vertical locations of waist and thigh, the next step
is to estimate the waist width and thigh width. Taking waist
width as an example, this calculation can be considered as
fixing y = yw, and searching for the x-axis coordinates of the
left and right waist boundaries xlwb and xrwb from the contour
image. The x-axis coordinate of left waist boundary xlwb can
be computed by:

xlwb = argmin
x
|x− xcw| ,

s.t. x ∈ [0, xcw], (x, ylw) ∈ G.
(1)

Here xcw is x-axis coordinate of the center waist, which can
be approximated by x-axis coordinate of the center shoulder
xcs. ylw and yrw both are equal to yw. G is a set contains all
pixels labeled as the background. Similarly, xrwb is given by:

xrwb = argmin
x
|x− xcw| ,

s.t. x ∈ [xcw,M ], (x, yrw) ∈ G.
(2)

Here M is the width of the image. ylwb and yrwb both are equal
to yw. The thigh boundary along the x-axis is determined by
xltb and xrtb, which can be calculated in the same way as Eqns.
(1) and (2). With the coordinates of these boundaries, the waist
width is the Euclidean distance between plwb and prwb. Thigh
width is half of the Euclidean distance between pltb and prtb.
So WTR is computed by:

WTR =
d (plwb, prwb)

0.5 · d (pltb, prtb))
, (3)

where d(·) denotes the Euclidean distance between the two
pixels.

2) WHpR: the ratio of waist width to hip width. Given
the left and right hip skeleton joints plh and prh, the left
hip boundary plhb and right hip boundary prhb are calculated
following the rules in Eqns. (1) and (2). Then hip width is
the Euclidean distance between plhb and prhb. The WHpR is
computed by:

WHpR =
d (plwb, prwb)

d (plhb, prhb)
. (4)

3) WHdR: the ratio of waist width to head width. Since
the images have different scales, the waist widths computed
from the images cannot directly represent the measured waist
width. According to the anthropometry study on adult head
circumferences [39], there are tiny differences on the width
of adult heads. Thereby, WHdR is computed to represent the
waist width. Here head width is the Euclidean distance between
left ear ple and right ear pre. Then WHdR is given by:

WHdR =
d (plwb, prwb)

d (ple, pre)
. (5)

4) HpHdR: the ratio of hip width to head width. As
described above, we use this ratio to represent the hip width
in each body image. The HpHdR is computed by:

HpHdR =
d (plhb, prhb)

d (ple, pre)
. (6)

5) Area: the area between waist and hip. Because of the
unknown scale information for each image, Area is expressed
as the number of pixels per unit area between waist and hip.
The number of pixels between waist and hip is given by:

#pixels =
∑

x∈[0,M ]
y∈[yw,yh]

1 [lx,y = b] , (7)

here 1 [·] is an indicator function. lx,y represents the label
(obtained from CSJ detection) assigned to the pixel that locates
at (x, y). Then the Area is calculated by:

Area =
#pixels

(yh − yw) · 0.5 · [d(plwb, prwb) + d(plhb, prhb)]
(8)

As shown in Fig. 5, the prediction approach can take the
different input: either a pair of images or a single image.
The BMI difference can be classified and estimated from a
pair of input images. On the other hand, the BMI value can
be estimated from a single body image. Five anthropometric
features are extracted from each body image, resulting in a
feature vector f =[WTR,WHpR,WHdR,HpHdR,Area]T . For a single
image, f is the feature used for estimation. For pairwise images,
the following transformation is applied to the features f1 and
f2 for generating the transformed feature:

ft = logf1 − logf2, (9)

where f1 and f2 are features extracted from the “previous”
and “current” images, respectively. log(·) denotes applying
logarithmic operation to each element in the vector.

After extracting the features from a pair of images or a
single image, we apply a normalization to the features by:

m′ =
m− µ
σ

, (10)

where m is the extracted feature (denoted as f or ft above).
µ is the mean value and σ is the standard deviation, both are
calculated from the training data along each feature dimension
(there are 5 feature dimensions). The normalization is essential
in order to obtain a robust estimation.

V. LEARNING THE MAPPING

The weight/BMI analysis is to map the anthropometric
features to BMI values. The training process is to learn the
mapping function. In the estimation, the learned function is
used to estimate the BMI values from extracted features. We
study the problem in different settings. Since the problem is
relatively new and challenging, we explore how well we can
achieve at different levels of difficulties:
• Recognize the weight difference (increase, decrease or

the same) t̂c, given a pair of images.
• Predict how big the weight or BMI difference t̂d is

between a given pair of images.
• Estimate the BMI value t̂v from a single body image.
Weight difference recognition is a three-class classification

problem. The pairwise feature ft used for training and testing in
this problem is obtained from Eqn. (9). The ground-truth label
tc is generated based on the weight change on the pairwise
images (suppose the height of each subject remain the same in
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a pair of images). tc ∈ [0, 1,−1]: 0 denotes keeping the same
weight, 1 denotes weight increased, and -1 denotes weight
decreased.

The level of BMI differences is considered as a regression
problem. The pairwise-features ft are also used for training
and testing in this problem. The ground-truth label td is the
BMI difference of the pair images which may be positive or
negative.

BMI value estimation is also defined as a regression
problem. The feature vector extracted from each single image
f =[WTR,WHpR,WHdR,HpHdR,Area]T is used for this problem.
The ground-truth label tv is the BMI value.

We employ the multi-class support vector machines (multi-
SVMs) [40] for classification, and the support vector regression
(SVR) [41] and Gaussian process regression (GPR) [42] for
BMI difference prediction and BMI estimation.

A. Support vector machine

Support vector machines (SVMs) are supervised learning
algorithms that analyze data for classification or regression.
There are two main categories for SVMs: support vector
classification (SVC) and support vector regression (SVR). They
have been widely utilized in many problems [43], [44]. The
SVM can do nonlinear classification using kernel functions.
Gaussian radial basis Function (RFB) kernel is one of the most
popular kernels. In this work, the RBF kernel achieves a better
performance in classification and regression than other kernels.

The SVC is a binary classifier. To get multi-class classifi-
cation, a set of binary classifiers are constructed with each
trained to separate one class from another. For n classes, this
results in (n−1)n

2 binary classifiers. Since our classification on
BMI difference has three classes {0,1,-1} for a pair of images,
3 binary classifiers are trained accordingly. The SVR uses the
same principle, similar to the SVC, but with differences in the
optimization.

B. Gaussian processing regression

A Gaussian process (GP) is a collection of random variables
and a finite number of variables which have a joint Gaussian
distribution [45]. GPR means Gaussian process regression. The
prior mean and covariance of the GP need to be specified. The
prior mean is assigned constantly with zero, or the mean of the
training data. The prior covariance is specified by passing a
kernel object. The hyper-parameters of the kernel are optimized
by maximizing the log-marginal-likelihood. A rational quadratic
kernel is employed for GPR. Given a set of training examples
(a1, b1), ....(an, bn), the rational quadratic kernel is defined as:

k(ai, aj) =

(
1 +

D(ai, aj)
2

2αι2

)−α
, (11)

here ι is a length-scale parameter, α is a scale mixture
parameter, and D(·) denotes the distance between two sample
points.

VI. PERFORMANCE MEASURES

It is critical to measure the correlation between the extracted
anthropometric features and body weights or BMIs. Pearson’s
correlation coefficient (PCC) is employed for measuring the
correlation. It is a measure of the linear correlation between
two variables. It was developed by Karl Pearson in 1895 from
a related idea introduced by Francis Galton [46]. Given two
sets of data {a1, ..., an} and {b1, ..., bn}, the formula for PCC
is:

PCC =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2
, (12)

here PCC is a scalar value between −1 and 1. If PCC < 0, it
shows a negative correlation between the two sets. If PCC > 0,
it shows a positive correlation. When PCC = 0, it indicates
that there is no correlation between the two sets. When PCC
is close to −1 or 1, there is a very strong correlation.

We apply a hypothesis testing with a statistical significance
measure [47]. The p-value is utilized to decide whether a
significant correlation exists between the two sets of data. We
can make a decision by:
• If the p-value is smaller than the significance level α,

it can reject the null hypothesis (there is no correlation
between the two sets).

• If the p-value is larger than the significance level α, it
fails to reject the null hypothesis.

The significance level α can be set to, e.g., 0.001, 0.01 or
0.05. If the p-value is equal to or smaller than the threshold,
it indicates a significant correlation between the two data sets.

In addition to correlation, we measure the performance of the
proposed approach for weight or BMI estimation. The recall
is used to evaluate the classification. And mean absolute error
(MAE), mean absolute percentage error (MAPE) and absolute
percentage error (APE) are used to measure the regression
results:
• Recall: it is a performance measure that quantifies the

ability of the classifier to correctly classify the positive
training instances (also true positive rate, sensitivity). It is
computed as the number of corrected classification divided
by the number of samples that should have been classified
as this class.

• MAE: it is defined as the average of absolute error between
the estimated value and the ground truth:

MAE =
1

N

N∑
j=1

|r̂j − rj | , (13)

here r̂i is the estimated value for j − th sample, rj is the
ground truth for j− th sample, and N is the total number
of test samples.

• MAPE: it is the mean absolute percentage error, computed
as:

MAPE =
100

N

N∑
j=1

∣∣∣∣ r̂j − rjrj

∣∣∣∣ , (14)

where all variables in Eqn. (14) have the same meaning
as in Eqn. (13). Considering the large range of BMIs (15
to 75) in the visual-body-to-BMI dataset, the absolute
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TABLE II
PEARSON’S CORRELATION BETWEEN THE EXTRACTED FEATURES AND THE BMI VALUES IN DIFFERENT GENDER GROUPS.

Male Female Overall

n = 1334 n = 666 n = 2000

p−value correlation p−value correlation p−value correlation

WTR 0.0000 0.1774 0.0078 0.1033 0.0000 0.1320
WHpR 0.0000 0.1771 0.0018 0.1301 0.0000 0.1371
WHdR 0.0000 0.3317 0.0000 0.2992 0.0000 0.3038
HpHdR 0.0000 0.2791 0.0000 0.2769 0.0000 0.2785
Area 0.0000 0.4082 0.0000 0.3219 0.0000 0.3873

percentage error can be another useful measure for the
performance of BMI prediction from single images. For
example, two individuals with the same height, one’s
BMI is 20 and another is 40. If they both have their BMI
increase by 2, such a change is more obvious on the
individual with BMI = 20. MAPE measures the error by
taking the BMI as the base. APE is calculated by a single
estimated value and ground-truth. It is a relative error.

VII. EXPERIMENTS

In this section, we explore the feasibility of analyzing body
weight from 2D body images. We first examine the correlation
between the extracted anthropometric features and the BMI
values and then perform three estimation experiments using
the extracted features.

The visual-body-to-BMI dataset is randomly split into
training and test sets. The training set contains 2000 subjects
(4000 images) of 1334 males and 666 females. The test set
contains 950 subjects (1900 images): 650 males and 300
females. There is no overlap of subjects between the training
and test sets.

A. Correlations between body features and BMI values

According to the hypothesis test, we can measure whether
the extracted features and BMI values are correlated. Here we
assume the correlation with p−value < 0.01 is a significant
correlation, and vice versa.

We measure the correlation between the extracted anthro-
pometric features and BMI values on the training set. The
results are shown in Table II. p−value = 0.0000 indicates
that the value is smaller than 0.0001. From Table II we can
see that the feature Area shows a higher correlation with BMI
than other features. The correlation is a little lower in the
female group than the male group, which may be caused by
the different clothing styles or body fat distribution between
females and males. The correlation coefficients of WTR and
WHpR are lower than the other three features. Velardo et. al
[16] reported an average correlation coefficient of 0.27 for
BMI and waist to thigh ratio, and Vazquez et. al [14] reported
a correlation coefficient of 0.34 for BMI and waist to hip ratio.
Considering that various clothes styles exist in the dataset
which may bring negative influences to feature calculation, the
correlation coefficients of these two features given in Table II
are slightly low but still acceptable. According to the above
analysis, the conclusion can be drawn that the extracted features

TABLE III
RECALL OF THREE-CLASS CLASSIFICATION FROM THE PAIR-WISE IMAGES.

Recall (%)

Class Male Female Overall

0 63.6 40.0 56.3
1 81.0 89.2 83.6
-1 77.3 88.0 81.1

Fig. 8. Confusion matrix of weight difference classification results. The
diagonal cells show the number and percentage of correct classifications by
the method.

are correlated with the corresponding BMI values. Thereby,
it is reasonable to estimate BMI values using the extracted
features.

B. Recognize weight difference from a pair of images

The proposed approach takes either a pair of body images or
a single body image as the input. For the pairwise images, the
approach performs a three-class classification which decides the
subject in the pairwise images as weight increased, decreased
or keeping the same. Furthermore, we estimate how much the
BMI difference between the pairwise images is.

1) Weight change or not?
The approach can process a three-class classification {0,1,-1}

for a pair of images from the same subjects. We use the
features calculated by Eqn. (9) in Section IV-B to train a multi-
SVMs which contains 3 binary classifiers. The RBF is utilized
for the SVM kernel which achieves a better performance on
classification than other kernels.

The recall of weight difference classification is given in Table
III. Taking into account the different body fat rate between
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Input image
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Fig. 9. Some results of the weight difference classification. The upper panel
shows good cases, and the lower panel shows failure cases. The BMI difference
is from the left one to the right one.

males and females, the recall is measured for each gender
group. It is seen that the accuracy for class 0 (keep the same
weight) is much lower than the other two classes: 1 (weight
increase) and -1 (weight decrease). The reason may be that the
number of subjects in class 0 (481) is much less than the other
two classes (1246 + 1223). There is an uneven distribution
among the three classes. Fig. 8 shows the confusion matrix of
weight change classification. The accuracy of weight increased
pairs is 83.6%, and the accuracy of weight decreased pairs
is 81.1%. They are both within the acceptable range. Fig. 9
shows some examples of the classification. The upper panel
shows some good cases, while the lower panel shows some
failure cases. Failure cases are observed due to the interference,
occlusion of the body, or large body pose, etc.

2) How big is the weight change?
Further exploration is to discover how big the weight or BMI

change between pairwise images is. The features computed
by Eqn. (9) are used to train the regression model. Here we
employ the SVR (with the RBF kernel) and GPR models. Table
IV shows the MAEs and standard deviations of the estimated
BMI differences by the two regression models. We can see that
the GPR model performs slightly better than the SVR model.
Fig. 10 depicts the comparison of MAEs between the SVR
and the GPR broken down by the absolute BMI differences.
The difference between SVR and GPR for all ranges are less
than 1 except for the range of 0.5− 5.5 (approximately 1.16).
The MAEs in the absolute BMI difference range > 15.5 are
relatively higher than other ranges. This may be caused by the
small number of subjects (about 7.90%) with BMI differences
larger than 15.5. The distribution of BMI differences in the
visual-body-to-BMI dataset is given as 492 subjects are in
the range of BMI difference < 0.5, 921 are between 0.5 and
5.5, 866 are between 5.5 and 10.5, 438 are between 10.5 and

TABLE IV
THE MAES AND STANDARD DEVIATIONS OF THE ESTIMATED BMI

DIFFERENCES USING SVR AND GPR MODELS.

MAE Std

Model Male Female Overall Male Female Overall

SVR 3.6 4.1 3.8 3.6 3.5 3.6
GPR 3.6 4.0 3.7 3.4 3.5 3.5

0 - 0.5 0.5 - 5.5 5.5 - 10.5 10.5 - 15.5 > 15.5

BMI Difference Range
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Fig. 10. Comparison of MAEs between SVR and GPR broken down by the
absolute BMI differences.

15.5 and 233 are in the range of BMI difference > 15.5. The
proposed approach shows effectiveness in predicting how big
the weight or BMI change is from a pair of body images.

C. Estimate BMI from a single image

Now we study the BMI estimation from single images
by using the SVR and GPR models. Different from the
previous two experiments, we use the anthropometric features
f =[WTR,WHpR,WHdR,HpHdR,Area]T extracted from the single
image for BMI estimation.

The MAEs and MAPEs of the estimated BMI values by two
regression models are given in Tables V and VI, respectively.
The overall MAEs of the predicted BMI values are between
3 and 4, the range of BMIs in the dataset is from 15 to 75,
as shown in Fig. 3. The error of estimated BMIs is relatively
small compared to the large range of BMIs in the dataset. Fig.
11 shows the MAEs and MAPEs between SVR and GPR in
different BMI categories: underweight, normal, overweight and
obese. We can see that the two regression methods perform well
in the normal category. Though the MAEs in obese category
is between 5 and 6.5, taking into account the large range of
BMI distribution in the obese category (30 to 75), the MAPEs
of this category are acceptable. To compare the ground truth
BMIs with the estimations, a scatter plot based on the SVR
results is shown in Fig. 12. The red dash-dot line shows where
the two values are the same. The two green lines show where
the absolute differences between the two values are 5. It is
shown that points mainly distribute around the red line. Most
outliers have the ground truth BMI values larger than 55. It
can be seen that the proposed method tends to have a bias with
an overestimation for low BMIs (BMI values between 20 and
30) and have an underestimation of high BMIs (BMI values
larger than 35).
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Fig. 11. Comparison of MAEs and MAPEs between SVR and GPR in different
BMI categories: underweight (BMI ≤ 18.5), normal (18.5 < BMI ≤ 25),
overweight (25 < BMI ≤ 30) and obese (BMI > 30).

TABLE V
THE MAES AND STANDARD DEVIATIONS OF PREDICTED BMI IN

DIFFERENT GENDER GROUPS USING SVR AND GPR MODELS.

MAE Std

Model Male Female Overall Male Female Overall

SVR 3.4 4.5 3.8 3.3 4.8 3.6
GPR 3.5 4.4 3.9 3.5 4.0 3.7

TABLE VI
MAPES OF PREDICTED BMI IN DIFFERENT GENDER GROUPS USING SVR

AND GPR MODELS.

Model Male Female Overall

SVR 11.3% 15.0% 12.5%
GPR 12.1% 15.2% 13.1%
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Fig. 12. Scatter plot of the ground-truth BMIs over the estimated BMIs by
SVR.

Figure 13 shows some examples of prediction. The absolute

Input images

Prediction

24.6

26.2
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28.4

35.4

36.1

APE 6.5% 3.0% 0.4% 2.0%

Ground-truth 21.6

29.7

37.5%

Fig. 13. Examples of estimating BMI from a single body image.

TABLE VII
COMPARISON OF BMI ESTIMATION BETWEEN OUR METHOD AND OTHER

METHODS.

MAE MAPE (%)

Method Male Female Overall Male Female Overall

PIGF 4.61 4.58 4.60 15.5 15.6 15.5
VGG feature 3.72 4.48 3.94 12.7 16.0 13.7
Ours 3.74 4.16 3.86 12.7 14.2 13.1

percentage error (APE =
∣∣∣ r̂j−rjrj

∣∣∣) is calculated for each
case. Some failure cases are caused by ambiguous boundaries
between the foreground and background, image blur, or large
body pose. A detailed discussion about estimation errors and
failure cases will be given in Section VII-E.

D. Comparison with other methods

To the best of our knowledge, there is no previous approach
that can estimate the BMI values from 2D body images only.
Thereby, we compare with two methods which predict BMI
values from face images. One is a geometric feature based
method [25] and another is a VGG-face feature based method
[28]. They are denoted as PIGF (psychology inspired geometric
feature) and VGG feature, respectively. These two methods
both require clear frontal face images as the input, while
some images in visual-body-to-BMI dataset do not meet this
requirement. For a fair comparison, we select 2000 images
which contain the clear frontal view face and then crop the
face images. The 2000 images are split into training and test
sets, which contains 1500 and 500 images, respectively. The
input of our approach is a single body image, and the input
of the other two methods is a face image cropped from the
same body image. The comparison of the results is shown in
Table VII. It can be seen that the proposed method outperforms
the PIGF and VGG-face feature based methods in most cases,
except on the male set. Moreover, the proposed method does
not require a clear frontal view face image as input, which is
useful for more general applications.

Furthermore, considering the features learned in deep neural
networks (DNN) are demonstrated to be transferable and
effective when used in other visual recognition tasks [48], we
compare our anthropometric features with that the deep features.
In this experiment, we employ the VGG-Net [49] model which
is pre-trained on ImageNet database [50] to extract the deep
feature. Then an SVR model is trained based on the extracted
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TABLE VIII
RESULTS OF BMI ESTIMATION FROM OUR ANTHROPOMETRIC FEATURES

AND THE VGG-NET FEATURE.

MAE MAPE (%)

Feature Male Female Overall Male Female Overall

VGG-Net 4.65 5.55 4.94 15.6 17.8 16.3
Ours 3.41 4.52 3.76 11.3 15.0 12.5

TABLE IX
THE MEAN RELATIVE ERRORS OF THE EXTRACTED FEATURES.

Head Waist Hip Thigh

Error 2.1% 5.4% 4.7% 9.7%

deep feature. The feature from the fc6 layer is extracted for
each body image in the training and test sets. VGG-Net takes
an image of size 224 × 224 with the average image subtracted
as the input. To normalize the images in visual-body-to-BMI
dataset to a common size, we apply zero padding to the images,
and then resize them to 224 × 224. The training and test sets
in this experiment are the same as the experiment in Section
VII-C. Table VIII presents the results obtained based on the
two features. It can be seen that our anthropometric features
outperform the VGG-Net feature significantly.

E. Discussion

In this section, we first analyze the errors generated in
feature extraction. Then the statistical analysis will be given,
discussing whether the errors are acceptable for the application
of BMI estimation from a single image. Finally, we analyze
the influencing factors for the proposed method and possible
reasons for the failure cases.

For feature extraction and regression, the widths of head,
waist, hip and thigh are estimated from the 2D body images, and
used to calculate the four anthropometric features (WTR, WHpR,
WHdR, HpHdR). To analyze the error, we randomly selected 300
images from the dataset and manually labeled the widths of
head, waist, hip, and thigh for each image. Then the labeled
widths are used as the ground truth values (v) to calculate the
relative error (ε) of the estimated values (v̂) by: ε = |v−v̂|

v .
The mean relative errors of the extracted widths are shown in
Table IX. The four errors are within a relatively low range.
Since it is hard to label the area between waist and hip, where
the relative error of estimated Area is not given.

To demonstrate whether the errors are acceptable for BMI
estimation from a single body image, we further calculate the
accuracy of the predicted category. According to the estimated
BMI values, we can classify the body belong to which BMI
category (underweight, normal, overweight and obese). The
accuracy of the predicted category is the proportion of the
total number of predictions that are correct. This measurement
is helpful to decide if the errors are acceptable. For example,
given a body image with ground truth BMI value of 24.5, the
estimated value is 20. Though the absolute error is 4.5 which is
larger than the MAE (3.8), the predicted category (normal) is
correct. On the other hand, this measurement has a limitation.

TABLE X
THE ACCURACY OF PREDICTED CATEGORY.

Underweight Normal Overweight Obese

Accuracy 11.1% 78.3% 64.2% 81.0%

Prediction

Ground-truth

Large pose

Occlusion 
and loose 

clothes

Incorrect
segmentation

Prediction

Ground-truth

Prediction

Ground-truth
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44.1

51.0

41.9

57.0

44.4

34.5

25.8

20.4

32.7
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25.4 27.5

35.3

28.5 30.2

16.133.3

Fig. 14. Examples of failure cases with the corresponding detected body
contour and skeleton joints. The upper panel shows the cases with the large
pose. The middle panel shows the cases with body occlusion or loose clothes.
The lower panel shows the incorrect body contour cases.

For example, if the ground truth BMI is 25 and the estimated
value is 25.5, though the absolute error is 0.5, the predicted
category (overweight) is not correct. Considering the advantage
and limitation of this measure, we combine the accuracies of
predicted category (as shown in Table X) with the MAEs of
predicted BMIs (shown in Fig. 11) to evaluate the performance.
All predicted results shown in Table X are based on the SVR
method. As it can be observed from Table X and Fig. 11, the
prediction accuracy and MAE of the obese category are 81%
and 5.5, respectively. Taking into account the large range of
BMI on the obese category (30 to 75), the error of the obese
category is reasonable. The prediction accuracy and MAE
of the overweight category are 64.2% and 4.6, respectively.
The performance of the overweight category is a little lower
than the obese. The prediction accuracy of the underweight
category is the lowest since there are only 46 body images in
the database belong to the underweight category, among them,
9 are in the test set and 37 are in training set. The lack of
enough underweight body images in the training set could be
the reason for this lower performance.

To analyze influencing factors (such as pose, occlusion,
loose clothes, and scale) for the proposed method, and the
reasons (such as incorrect body contour) of failure, Fig. 14
shows some failure cases with the detected body contour
and skeleton joints. Most images in the dataset are frontal
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view body images with limited pose changes. Since there is
no annotation about body pose, it is difficult to conduct an
experiment to evaluate the performance with regard to pose
changes. Theoretically, the extracted anthropometric features
can tolerate small pose changes. The estimation may be
significantly influenced if the input is a profile view image or
with the large pose. The upper panel of Fig. 14 shows three
failure cases with different poses. Though the detected body
contour and skeleton joints are correct, the absolute errors are
large. The occlusion always brings negative influences to the
method, decreasing the accuracy of body contour detection.
Loose clothes is another negative factor to influence the real
body shape. Three cases with large body occlusions and loose
clothes are shown in the middle panel of Fig. 14. Because
all the extracted anthropometric features are relative values
(see details in Section IV-B), the scale changes in the image
will not impact the method. The lower panel of Fig. 14 shows
three failure cases caused by inaccurate contour. The incorrect
or inaccurate body contour direct influences the accuracy of
the extracted features. The failure of contour detection could
be caused by image blurs, ambiguous boundaries between the
foreground and background, etc. The proposed method can be
further improved by employing more accurate body contour
detection algorithms.

VIII. CONCLUSION

In this work, we investigate the relation between body weight
and visual body appearance and estimate the BMI values from
2D body images. Correlation is analyzed between the extracted
anthropometric features and BMI values, which validates the
usability of the selected features. More specifically, body weight
analysis is studied at three different levels of difficulties: the
weight change classification is first investigated from a pair
of body images of the same subjects; further investigation is
conducted to estimate how big the weight change between the
pairwise images is; the last is to predict the BMI value from a
single body image. To address the visual body weight analysis
problem, the computational method of five anthropometric
features is developed. And a new visual-body-to-BMI image
dataset has been collected and cleaned to facilitate this study.
The errors of the three estimation tasks evaluated by several
measurements are within acceptable ranges. Comparing with
the facial images analysis approaches, the proposed method
performs better in most cases. Furthermore, our anthropometric
features significantly outperform the VGG-Net feature on BMI
estimation. Based on all experimental results, it is promising
to analyze body weight or BMI from the 2D body images
visually. In the future, we will combine body images with face
images to improve the BMI prediction, and will explore the
DNN-based method to address this visual body weight analysis
problem.

ACKNOWLEDGMENT

The work is partly supported by an NSF grant IIS 1450620,
the Center for Identification and Technology and Research
(CITeR), and a WV HEPC grant. The authors would like to
thank the editor and anonymous reviewers for comments and
suggestions to improve the manuscript.

REFERENCES

[1] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information
security,” IEEE Transactions on Information Forensics and Security,
vol. 1, no. 2, pp. 125–143, 2006.

[2] Y. Zhu, Y. Li, G. Mu, S. Shan, and G. Guo, “Still-to-video face matching
using multiple geodesic flows,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 12, pp. 2866–2875, 2016.

[3] A. Nagar, K. Nandakumar, and A. K. Jain, “Multibiometric cryptosystems
based on feature-level fusion,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 1, pp. 255–268, 2012.

[4] A. Dantcheva, C. Velardo, A. Dangelo, and J.-L. Dugelay, “Bag of soft
biometrics for person identification,” Multimedia Tools and Applications,
vol. 51, no. 2, pp. 739–777, 2011.

[5] M. Günther, P. Hu, C. Herrmann, C. H. Chan, M. Jiang, S. Yang, A. R.
Dhamija, D. Ramanan, J. Beyerer, J. Kittler et al., “Unconstrained face
detection and open-set face recognition challenge,” in IEEE International
Joint Conference on Biometrics (IJCB). IEEE, 2017, pp. 697–706.

[6] Q. Wang, G. Guo, and M. I. Nouyed, “Learning channel inter-
dependencies at multiple scales on dense networks for face recognition,”
arXiv preprint arXiv:1711.10103, 2017.

[7] A. J. Henderson, I. J. Holzleitner, S. N. Talamas, and D. I. Perrett,
“Perception of health from facial cues,” Phil. Trans. R. Soc. B, vol. 371,
no. 1693, p. 20150380, 2016.

[8] C. Mayer, S. Windhager, K. Schaefer, and P. Mitteroecker, “Bmi and whr
are reflected in female facial shape and texture: a geometric morphometric
image analysis,” PloS one, vol. 12, no. 1, p. e0169336, 2017.

[9] M. Arnold, M. Leitzmann, H. Freisling, F. Bray, I. Romieu, A. Renehan,
and I. Soerjomataram, “Obesity and cancer: an update of the global
impact,” Cancer Epidemiology, vol. 41, pp. 8–15, 2016.

[10] A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen,
“Body-mass index and incidence of cancer: a systematic review and
meta-analysis of prospective observational studies,” The Lancet, vol. 371,
no. 9612, pp. 569–578, 2008.

[11] R. Wolk, P. Berger, R. J. Lennon, E. S. Brilakis, and V. K. Somers,
“Body mass index,” Circulation, vol. 108, no. 18, pp. 2206–2211, 2003.

[12] J. B. Meigs, P. W. Wilson, C. S. Fox, R. S. Vasan, D. M. Nathan, L. M.
Sullivan, and R. B. Dagostino, “Body mass index, metabolic syndrome,
and risk of type 2 diabetes or cardiovascular disease,” The Journal of
Clinical Endocrinology & Metabolism, vol. 91, no. 8, pp. 2906–2912,
2006.

[13] A. Molarius and J. Seidell, “Selection of anthropometric indicators for
classification of abdominal fatnessa critical review.” International Journal
of Obesity and Related Metabolic Disorders, vol. 22, no. 8, p. 719, 1998.

[14] G. Vazquez, S. Duval, D. R. Jacobs Jr, and K. Silventoinen, “Comparison
of body mass index, waist circumference, and waist/hip ratio in predicting
incident diabetes: a meta-analysis.” Epidemiologic Reviews, vol. 29, no. 1,
pp. 115–128, 2007.

[15] M. Ashwell, S. Chinn, S. Stalley, and J. Garrow, “Female fat distribution-
a simple classification based on two circumference measurements.”
International Journal of Obesity, vol. 6, no. 2, pp. 143–152, 1982.

[16] J. C. Seidell, A. Oosterlee, M. Thijssen, J. Burema, P. Deurenberg,
J. Hautvast, and J. Ruijs, “Assessment of intra-abdominal and subcu-
taneous abdominal fat: relation between anthropometry and computed
tomography,” The American journal of clinical nutrition, vol. 45, no. 1,
pp. 7–13, 1987.

[17] C. Velardo and J.-L. Dugelay, “Weight estimation from visual body
appearance,” in Proceedings of the IEEE International Conference on
Biometrics: Theory Applications and Systems (BTAS), 2010, pp. 1–6.

[18] “National health and nutrition examination survey,” Centers for Disease
Control and Prevention, 1999-2005.

[19] D. Cao, C. Chen, D. Adjeroh, and A. Ross, “Predicting gender and weight
from human metrology using a copula model,” in IEEE Fifth International
Conference on Biometrics: Theory, Applications and Systems (BTAS).
IEEE, 2012, pp. 162–169.

[20] C. Velardo and J.-L. Dugelay, “What can computer vision tell you about
your weight?” in Proceedings of the IEEE European Signal Processing
Conference (EUSIPCO), 2012, pp. 1980–1984.

[21] C. Velardo, J.-L. Dugelay, M. Paleari, and P. Ariano, “Building the space
scale or how to weigh a person with no gravity,” in IEEE International
Conference on Emerging Signal Processing Applications (ESPA). IEEE,
2012, pp. 67–70.

[22] T. V. Nguyen, J. Feng, and S. Yan, “Seeing human weight from a single
rgb-d image,” Journal of Computer Science and Technology, vol. 29,
no. 5, pp. 777–784, 2014.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. , NO. , 2019 13

[23] D. Nahavandi, A. Abobakr, H. Haggag, M. Hossny, S. Nahavandi,
and D. Filippidis, “A skeleton-free kinect system for body mass index
assessment using deep neural networks,” in IEEE International Systems
Engineering Symposium (ISSE), 2017, pp. 1–6.
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